Перейти к содержанию

Процессы Касперского


Рекомендуемые сообщения

Ссылка на комментарий
Поделиться на другие сайты

Если в хромиум-браузерах используются прокси (типа антизапрета) или аналогичные расширения, некоторые сайты могут не открываться.

Ссылка на комментарий
Поделиться на другие сайты

Ну да, видимо поэтому тестеры это и пропустили :)

 

Ошибка, если что, выглядит следующим образом:

Screenshot_20240429-141507.jpg

Изменено пользователем andrew75
  • Улыбнуло 2
Ссылка на комментарий
Поделиться на другие сайты

1 час назад, andrew75 сказал:

Если в хромиум-браузерах используются прокси (типа антизапрета) или аналогичные расширения, некоторые сайты могут не открываться.

Не только в хромиум-браузерах, в Файерфоксе такая-же проблема.

Пришлось временно исключить браузер из проверки защищённых соединений.

  • Улыбнуло 1
Ссылка на комментарий
Поделиться на другие сайты

9 часов назад, andrew75 сказал:

Ошибка воспроизводится в 21.18

Так что дарю тестерам готовый баг

Это не баг так как у ТП уже есть инфа о нём. Ответ будет баг известен :) 

Ссылка на комментарий
Поделиться на другие сайты

20 часов назад, ska79 сказал:

у ТП уже есть инфа о нём

какая-то инфа может и есть. Но есть ли нужная информация, это вопрос. Вобщем пошел собирать логи и писать запрос )

Ссылка на комментарий
Поделиться на другие сайты

6 минут назад, andrew75 сказал:

Вобщем пошел собирать логи и писать запрос )

а то кто то сразу плачет https://forum.kaspersky.com/topic/блокируется-шифрованный-трафик-расширения-vpn-в-браузере-edge-kaspersky-2117-41810/?do=findComment&comment=170136

Ссылка на комментарий
Поделиться на другие сайты

Видел я его пост.

Это и подтолкнуло. Раньше не хотел заморачиваться. Думал кто-то напишет, раз проблема не единичная.

Но чуствую быстрее будет самому сделать ) 

 

Если что - INC000016467474

Изменено пользователем andrew75
  • Like (+1) 1
Ссылка на комментарий
Поделиться на другие сайты

Получил ответ, видимо от первой линии поддержки. Смысл - добавьте домен в исключения проверки защищенных соединений (это не помогает, если что).

Гениально. Написал, почему они не правы ) 

Ждем дальше.

Изменено пользователем andrew75
  • Улыбнуло 2
Ссылка на комментарий
Поделиться на другие сайты

Пожалуйста, войдите, чтобы комментировать

Вы сможете оставить комментарий после входа в



Войти
  • Похожий контент

    • KL FC Bot
      От KL FC Bot
      Хотя автоматизация и машинное обучения используются в ИБ почти 20 лет, эксперименты в этой области не останавливаются ни на минуту. Защитникам нужно бороться с более сложными киберугрозами и большим числом атак без существенного роста бюджета и численности ИБ-отделов. ИИ помогает значительно разгрузить команду аналитиков и ускорить многие фазы работы с инцидентом — от обнаружения до реагирования. Но ряд очевидных, казалось бы, сценариев применения машинного обучения оказываются недостаточно эффективными.
      Автоматическое обнаружение киберугроз с помощью ИИ
      Предельно упрощая эту большую тему, рассмотрим два основных и давно протестированных способа применения машинного обучения:
      Поиск атак. Обучив ИИ на примерах фишинговых писем, вредоносных файлов и опасного поведения приложений, можно добиться приемлемого уровня обнаружения похожих угроз. Основной подводный камень — эта сфера слишком динамична, злоумышленники постоянно придумывают новые способы маскировки, поэтому модель нужно очень часто обучать заново, чтобы поддерживать ее эффективность. При этом нужен размеченный набор данных, то есть большой набор свежих примеров доказанного вредоносного поведения. Обученный таким образом алгоритм не эффективен против принципиально новых атак, которые он «не видел» раньше. Кроме того, есть определенные сложности при обнаружении атак, целиком опирающихся на легитимные ИТ-инструменты (LOTL). Несмотря на ограничения, этот способ применяется большинством производителей ИБ-решений, например, он весьма эффективен для анализа e-mail, поиска фишинга, обнаружения определенных классов вредоносного программного обеспечения. Однако ни полной автоматизации, ни 100%-ной надежности он не обещает. Поиск аномалий. Обучив ИИ на «нормальной» деятельности серверов и рабочих станций, можно выявлять отклонения от этой нормы, когда, например, бухгалтер внезапно начинает выполнять административные действия с почтовым сервером. Подводные камни — этот способ требует собирать и хранить очень много телеметрии, переобучать ИИ на регулярной основе, чтобы он поспевал за изменениями в ИТ-инфраструктуре. Но все равно ложных срабатываний будет немало, да и обнаружение атак не гарантировано. Поиск аномалий должен быть адаптирован к конкретной организации, поэтому применение такого инструмента требует от сотрудников высокой квалификации как в сфере кибербезопасности, так и в анализе данных и машинном обучении. И подобные «золотые» кадры должны сопровождать систему на ежедневной основе. Подводя промежуточный философский итог, можно сказать, что ИИ прекрасно подходит для решения рутинных задач, в которых предметная область и характеристики объектов редко и медленно меняются: написание связных текстов, распознавание пород собак и тому подобное. Когда за изучаемыми данными стоит активно сопротивляющийся этому изучению человеческий ум, статично настроенный ИИ постепенно становится менее эффективен. Аналитики дообучают и настраивают ИИ вместо того, чтобы писать правила детектирования киберугроз, — фронт работ меняется, но, вопреки распространенному заблуждению, экономии человеческих сил не происходит. При этом стремление повысить уровень ИИ-детектирования угроз (True Positive, TP) неизбежно приводит к увеличению и числа ложноположительных срабатываний (False Positive, FP), а это напрямую увеличивает нагрузку на людей. Если же попытаться свести FP почти к нулю, то понижается и TP, то есть растет риск пропустить кибератаку.
      В результате ИИ занимает свое место в ансамбле инструментов детектирования, но не способен стать «серебряной пулей», то есть окончательно решить проблемы детектирования в ИБ или работать целиком автономно.
      ИИ-напарник аналитика SOC
      ИИ нельзя целиком доверить поиск киберугроз, но он может снизить нагрузку на человека, самостоятельно разбирая простые предупреждения SIEM и подсказывая аналитикам в остальных случаях:
      Фильтрация ложных срабатываний. Обучившись на предупреждениях из SIEM-системы и вердиктах команды аналитиков, ИИ способен достаточно надежно фильтровать ложноположительные срабатывания (FP) — в практике сервиса Kaspersky MDR это снижает нагрузку на команду SOC примерно на 25%. Подробности реализации «автоаналитика» мы опишем в отдельном посте. Приоритизация предупреждений. Тот же механизм машинного обучения может не только фильтровать ложные срабатывания, но и оценивать вероятность того, что обнаружен признак серьезной вредоносной активности. Такие серьезные предупреждения передаются для приоритетного анализа экспертам. Альтернативно «вероятность угрозы» может быть просто визуальным индикатором, помогающим аналитику обрабатывать наиболее важные оповещения с наибольшим приоритетом. Поиск аномалий. ИИ может быстро предупреждать об аномалиях в защищаемой инфраструктуре, отслеживая такие явления, как всплеск количества предупреждений, резкое увеличение или уменьшение потока телеметрии с конкретных сенсоров или изменение ее структуры. Поиск подозрительного поведения. Хотя сложности поиска произвольных аномалий в сети значительны, некоторые частные сценарии хорошо автоматизируются и машинное обучение работает в них эффективней статичных правил. Примеры: поиск несанкционированного использования учетных записей из необычных подсетей, детектирование аномального обращения к файловым серверам и их сканирования, поиск атак с использованием чужих билетов TGS (атаки Pass-the-Ticket). Большие языковые модели в ИБ
      Наиболее модная тема ИИ-индустрии, большие языковые модели (LLM), тоже многократно опробована ИБ-компаниями. Оставляя полностью за скобками такие темы, как написание фишинговых писем и ВПО при помощи GPT, отметим многочисленные интересные эксперименты по привлечению LLM к рутинным работам:
      генерация расширенных описаний киберугроз; подготовка черновиков отчетов по расследованию инцидентов; нечеткий поиск в архивных данных и логах через чат; генерация тестов, тест-кейсов, кода для фаззинга; первичный анализ декомпилированного исходного кода при реверс-инжиниринге; снятие обфускации и объяснение длинных командных строк (такая технология уже используется нашим сервисом MDR); генерация подсказок и рекомендаций при написании детектирующих правил и скриптов. Большинство перечисленных по ссылке работ и статей являются нишевыми внедрениями или научными экспериментами, поэтому они не дают измеримой оценки эффективности. Более того, имеющиеся исследования эффективности квалифицированных работников, которым в помощь выданы LLM, показывают противоречивые результаты. Поэтому внедрение подобных решений должно проводиться медленно и поэтапно, с предварительной оценкой потенциала экономии, детальной оценкой вложенного времени и качества результата.
      View the full article
    • JAZZ and JAZZ
      От JAZZ and JAZZ
      При включении ноутбука и загрузки ОС через 2-5мин начинается нагрев ЦП до 92 градусов GPU до 63 градусов.
      При этом сам запускается процесс fc.exe в видеокарте NVIDIA хотя она должна быть не активной, проблему поймал день назад ноут уходит в сильный перегрев.
      Пробовал лечить, результата нет.
      CollectionLog-2024.10.07-23.37.zip
    • KL FC Bot
      От KL FC Bot
      Инцидент с синим экраном, вызванный обновлением защитного решения CrowdStrike, по подсчетам Microsoft, затронул более 8,5 миллионов компьютеров по всему миру. Эта история дорого обошлась многим компаниям и вызвала много споров о том, как не допустить повторения подобной ситуации.
      Понятно, что от ошибки не застрахован никто, в сложных программных системах просто невозможно гарантировать абсолютное отсутствие багов. Но правильно выстроенный процесс разработки, тестирования и доставки продуктов и их обновлений позволяет изрядно минимизировать риск серьезного сбоя.
      И у нас бывали инциденты, напрямую связанные с обновлениями наших продуктов. Но последний раз заметная проблема с обновлениями случилась у нас в далеком 2013 году.
      После этого неприятного эпизода мы провели тщательный анализ причин и полностью пересмотрели свой подход к подготовке и тестированию обновлений как в продуктах для бизнеса, так и в наших разработках для домашних пользователей. Выстроенная в итоге система отлично себя зарекомендовала — за 11 лет у нас не случилось ни одного сбоя подобного уровня.
      Мы не делаем секрета из построенного нами механизма выпуска обновлений и готовы делиться этой информацией с индустрией. Ведь без свободного обмена лучшими практиками и решениями, разработанными разными компаниями, прогресс отрасли кибербезопасности будет попросту невозможен. Одними из главных составляющих этого механизма системы являются: многоуровневое тестирование, постепенная раскатка обновлений и автоматический мониторинг аномалий. Расскажем о них по порядку.
      Многоуровневое тестирование
      Обновления наших продуктов бывают двух типов: добавление детектирующей логики и изменение функциональности продукта. Добавление новых функций потенциально добавляет больше рисков, но проблемы могут возникнуть и с детектирующей логикой. Поэтому мы тщательно тестируем и те и другие апдейты на разных этапах.
       
      View the full article
    • dexter
      От dexter
      Всем привет .
       
      Наконец-то прошла суматоха со сменой продукта на ПК. Теперь появились непонятки на смартфоне.
      Смотрим картинки в хронологическом порядке (из лички , прилагаются). После всех манипуляций , перехожу по ссылке после сканирования - ldc.my.kaspersky.com/r/ *** *** *** (много букв-цифр).
      Перенаправляет на глобальный сайт Касперского. Там скачиваю файл apk .
      Запускаю файл – пишет обновить приложение ?  Да. Далее показывает – приложение  не установлено , так как его пакет  недействителен (или повреждён) .

      Такой вопрос : как обновить лицензию на Касперского в смартфоне. Что делаю не так, как задумано разработчиками ?
       




    • KL FC Bot
      От KL FC Bot
      Игра Battle City, более известная как танчики, — символ давно ушедшей эпохи. Около 30 лет назад геймеры вставляли картридж в приставку, садились за пузатые телевизоры и пачками уничтожали вражеские танки до тех пор, пока кто-нибудь им не скажет про «кинескоп, который вот-вот должен сесть».
      Сегодня мир совсем другой, а танчики по-прежнему популярны. Дело в том, что современные аналоги предлагают геймерам не только поиграть, но и заработать NFT-токены. Злоумышленники тоже кое-что предлагают: сложную атаку для любителей криптовалютных игр.
      Бэкдор и эксплойт уязвимости нулевого дня в Google Chrome
      Эта история началась в феврале 2024 года, когда наше защитное решение обнаружило проникновение бэкдора Manuscrypt на компьютер пользователя из России. Такой бэкдор нам давно известен, его различные версии используют члены группировки APT Lazarus как минимум с 2013 года. Но что особенного в этой истории, если мы прекрасно знаем основной инструмент и методы работы злоумышленников?
      Дело в том, что эти хакеры обычно нацелены на крупные организации: банки, IT-компании, университеты и даже правительственные организации. Теперь руки Lazarus дотянулись до физических лиц — бэкдор на компьютере частного пользователя! Киберпреступники заманили жертву на сайт игры и получили полный доступ к ее компьютеру. Злоумышленникам удалось это сделать благодаря трем составляющим:
      невероятному желанию жертвы сыграть в любимые танчики в новой оболочке; уязвимости нулевого дня в Google Chrome; наличию эксплойта, позволявшего удаленно выполнить код в процессе Google Chrome. Для тех, кто переживает: компания Google выпустила обновление браузера, заблокировала сайт танчиков и поблагодарила исследователей безопасности «Лаборатории Касперского». Но на всякий случай: наши продукты детектируют и бэкдор Manuscrypt, и эксплойт. Подробности этой истории мы раскрыли в блоге Securelist.
       
      View the full article
×
×
  • Создать...