Перейти к содержанию

GoFetch: Взлом шифрования на процессорах Apple | Блог Касперского


Рекомендуемые сообщения

В середине марта исследователи из нескольких университетов в США опубликовали научную работу, в которой продемонстрировали аппаратную уязвимость в процессорах Apple серии M. Apple M — собственная разработка компании на базе архитектуры ARM, используемая в большинстве ноутбуков и настольных ПК, а также в некоторых планшетах iPad. Проблема может быть эксплуатирована для взлома алгоритмов шифрования. Атаку, построенную на базе этой уязвимости, назвали GoFetch.

Сочетание интересной темы с именем известного производителя привело к тому, что совершенно техническая работа была процитирована большим количеством специализированных и не очень изданий, зачастую с алармистскими заголовками типа «не доверяйте ноутбукам Apple свои приватные данные». На самом деле все не так плохо, но чтобы по-настоящему разобраться в сути новой проблемы, нам придется слегка углубиться в теорию работы процессоров, в частности поговорить про три концепции: предварительную выборку данных из оперативной памяти, программирование с постоянным временем и атаку по сторонним каналам. Как обычно, мы постараемся объяснить все максимально простыми словами.

Предварительная выборка данных

Центральный процессор компьютера или ноутбука выполняет программу, которая представлена в виде машинных кодов. Грубо говоря, это набор чисел, часть из которых представляет собой команды, а все остальное — данные для вычислений. На этом самом базовом уровне речь идет о самых простых командах: загрузить из памяти такие-то данные, произвести над ними какие-то вычисления, записать результат обратно в память.

Программу по идее нужно выполнять последовательно. Приведем самый простой пример: пользователь ввел пароль для доступа к криптокошельку. Нужно считать этот пароль из оперативной памяти, произвести над ним определенные вычисления, убедиться, что пароль правильный, и только тогда открыть доступ к секретным данным. Но если бы современные процессоры так выполняли весь код, наши компьютеры работали бы крайне медленно. Как удается ускорить выполнение программ? С помощью большого числа оптимизаций, в числе которых и предварительная загрузка данных.

Концепция предварительной загрузки данных заключается в следующем: если в коде программы будет обнаружена команда на загрузку определенных данных, почему бы во имя ускорения не загрузить их еще до того, как они понадобятся? Если данные в ходе дальнейших вычислений пригодятся — мы выполним программу чуть быстрее. Не пригодятся — не беда, сотрем их из кэш-памяти процессора и загрузим что-то еще.

Так работают самые базовые технологии предварительной выборки данных. В процессорах Apple используется довольно новый метод, известный как «контекстно зависимая предварительная выборка данных» или «data memory-dependent prefetcher» (DMP). Если коротко, DMP работает более агрессивно. Не всегда команды на загрузку данных из памяти доступны явным образом. Указатели на определенную область памяти могут быть результатом вычислений, которые еще нужно произвести. Либо они могут храниться в массиве информации, с которым программа будет работать позднее. DMP пытается угадать, что из данных программы является указателем на область памяти. Логика такая же: если что-то похоже на указатель, пытаемся загрузить информацию по соответствующему адресу. Процесс угадывания использует историю недавних операций, причем они могут относиться к совсем другой программе.

В 2022 году предыдущее исследование показало, что технология DMP достаточно часто путает указатели и какие-то другие данные, с которыми работает программа. Само по себе это проблемой не является: ну загрузили в кэш-память процессора что-то не то, ну бывает. Проблемы появляются, когда речь идет о работе алгоритмов шифрования. DMP может при некоторых условиях сломать концепцию программирования с постоянным временем. Давайте теперь поговорим про нее.

 

Посмотреть статью полностью

Ссылка на сообщение
Поделиться на другие сайты

Пожалуйста, войдите, чтобы комментировать

Вы сможете оставить комментарий после входа в



Войти
  • Похожий контент

    • KL FC Bot
      От KL FC Bot
      После долгих лет исследования и тестирования, в середине августа 2023 года Национальный институт стандартов и технологий США (NIST) наконец-то представил полноценные стандарты постквантового шифрования — FIPS 203, FIPS 204 и FIPS 205. Самое время поговорить о том, что они собой представляют и почему внедрять их в идеале нужно было уже вчера.
      Зачем нужна постквантовая криптография
      Для начала вкратце опишем ту угрозу, которую представляют для криптографии квантовые компьютеры. Состоит она в том, что квантовые вычисления могут успешно применяться для взлома асимметричного шифрования. Почему это важно? Как правило, шифрование современных коммуникаций в наиболее распространенной форме представляет собой двойную систему:
      Все сообщения шифруются симметричным алгоритмом (например, AES) — в нем используется только один ключ, который одинаков у всех участников коммуникации. Симметричные алгоритмы работают хорошо и быстро, но есть проблема: ключ надо как-то так передать от одного собеседника другому, чтобы его невозможно было перехватить в процессе передачи. Поэтому для передачи этого ключа используется асимметричное шифрование (например, RSA или ECDH). В нем у каждого собеседника есть пары ключей — закрытый и открытый, — которые связаны математически. Сообщение шифруется открытым ключом, а расшифровывается только закрытым. Асимметричное шифрование более медленное, поэтому использовать его для шифрования всех сообщений было бы непрактично. Тайну переписки обеспечивает тот факт, что вычислить закрытый ключ, зная соответствующий ему открытый, — задача крайне ресурсоемкая, на ее решение могут уйти десятки, сотни, тысячи, а то и миллионы лет. Но это если мы пытаемся решить ее при помощи классических компьютеров.
      Квантовые компьютеры существенно ускоряют вычисления такого рода. В частности, квантовый алгоритм Шора позволяет получать закрытые ключи асимметричного шифрования на многие порядки быстрее, чем рассчитывали создатели соответствующих криптографических схем, — за минуты или часы вместо лет и веков.
      В свою очередь, вычислив закрытый ключ асимметричного шифрования, можно узнать ключ симметричного шифрования, которым и зашифрована основная переписка. Таким образом вся переписка может быть прочитана.
       
      View the full article
    • KL FC Bot
      От KL FC Bot
      Благодаря ученым из Республиканского университета Уругвая мы теперь гораздо лучше понимаем, как можно восстанавливать изображение из паразитного радиошума, испускаемого мониторами. Если быть более точным, то из наводок от передачи данных через разъемы и кабели цифрового интерфейса HDMI. Используя современные алгоритмы машинного обучения, уругвайские исследователи показали, как из такого радиошума можно реконструировать текст, выводимый на внешний монитор.
      А что, раньше было нельзя?
      Разумеется, это не первая попытка атаки по сторонним каналам, цель которой восстановить изображение по паразитному излучению. Перехват радиошума от дисплея в соседнем помещении, также известный как подвид TEMPEST-атаки, был описан в исследовании, которое вышло в 1985 году. Уже тогда нидерландский исследователь Вим ван Эйк продемонстрировал, что можно перехватить сигнал с монитора, установленного неподалеку. В статье про родственную атаку EM Eye мы подробно рассказывали об этих исторических работах, поэтому не будем повторяться.
      Проблема в том, что ван Эйк проделал это с монитором сорокалетней давности, с электронно-лучевой трубкой и аналоговым методом передачи данных. Да и перехватываемое изображение тогда было простым для анализа, с белыми буквами на черном фоне без графики. В современных условиях, с цифровым интерфейсом HDMI, перехватить, а главное, восстановить данные значительно сложнее. Но именно это и проделали уругвайские ученые.
       
      View the full article
    • KL FC Bot
      От KL FC Bot
      На момент написания этого материала Павлу Дурову предъявлено обвинение во Франции, но он еще не предстал перед судом. Юридические перспективы дела очень неочевидны, но интересом и паникой вокруг Telegram уже пользуются жулики, а по соцсетям ходят сомнительные советы о том, что делать с приложением и перепиской в нем. Пользователям Telegram нужно сохранять спокойствие и действовать, основываясь на своей специфике использования мессенджера и доступной фактической информации. Вот что можно порекомендовать уже сегодня.
      Конфиденциальность переписки и «ключи от Telegram»
      Если очень коротко, то большую часть переписки в Telegram нельзя считать конфиденциальной, и так было всегда. Если вы вели в Telegram конфиденциальную переписку без использования секретных чатов, считайте ее давно скомпрометированной, а также переместите дальнейшие приватные коммуникации в другой мессенджер, например, следуя этим рекомендациям.
      Многие новостные каналы предполагают, что основная претензия к Дурову и Telegram — отказ сотрудничать с властями Франции и предоставить им «ключи от Telegram». Якобы у Дурова есть какие-то криптографические ключи, без которых невозможно читать переписку пользователей, а при наличии этих ключей — станет возможно. На практике мало кто знает, как устроена серверная часть Telegram, но из доступной информации известно, что основная часть переписки хранится на серверах в минимально зашифрованном виде, то есть ключи для расшифровки хранятся в той же инфраструктуре Telegram. Создатели заявляют, что чаты хранятся в одной стране, а ключи их расшифровки — в другой, но насколько серьезно это препятствие на практике, учитывая, что все серверы постоянно коммуницируют друг с другом, — не очевидно. Эта мера поможет против конфискации серверов одной страной, но и только. Стандартное для других мессенджеров (WhatsApp, Signal, даже Viber) сквозное шифрование называется в Telegram «секретным чатом», его довольно трудно найти в глубинах интерфейса, и оно доступно только для ручной активации в индивидуальной переписке.
       
      View the full article
    • KL FC Bot
      От KL FC Bot
      В последние годы количество скомпрометированных данных неуклонно растет. Практически каждый день в новостях появляются новые заметки об утечках и взломах, а мы все больше пишем о необходимости использования защиты — сейчас она актуальна как никогда.
      Сегодня погрузимся в историю и вспомним про самые громкие и крупные утечки данных. Сколько и какой информации было слито, как пострадали пользователи и многое другое — в этом материале.
      1. RockYou2024
      Коротко: хакеры собрали данные из старых утечек и выкатили самую большую компиляцию реальных пользовательских паролей — 10 млрд записей!
      Когда произошла утечка: в 2024 году.
      Кто пострадал: пользователи без надежной защиты по всему миру.
      RockYou2024 — король утечек и настоящий бич всех, кто думал, что он хакерам не интересен. В июле 2024 года киберпреступники на тематическом форуме выложили гигантскую подборку паролей: 9 948 575 739 уникальных записей. Даже несмотря на то, что RockYou2024 — это компиляция на основе старой утечки RockYou2021, результат все равно ошеломляет.
      Наш эксперт Алексей Антонов проанализировал эту утечку и выяснил, что 83% содержащихся в утечке паролей могли бы быть подобраны умным алгоритмом менее чем за час и лишь 4% утекших пользовательских паролей (328 млн) можно признать стойкими — их подбор займет более года с помощью умного алгоритма. Как работает умный алгоритм — мы писали в исследовании стойкости паролей, которое совместно с анализом новой утечки наглядно доказывает, что большинство пользователей по-прежнему крайне легкомысленно относятся к созданию паролей.
      При разборе новой утечки эксперт отфильтровал все нерелевантные записи и работал с оставшимся массивом из 8,2 млрд паролей, которые хранились в открытом виде, — это, конечно, не 10 млрд, но все еще много.
       
      View the full article
    • KL FC Bot
      От KL FC Bot
      Когда долго работаешь в индустрии кибербезопасности, то начинает казаться, что тебя уже сложно удивить каким-нибудь очередным взломом. Видеоняня? Взламывали. Автомобиль? Взламывали и неоднократно — самые разные модели. Да что там автомобили, уже и до автомоек добирались. Игрушечные роботы, кормушки для животных, пульты ДУ… А как насчет аквариума для рыбок? И такое было.
      Но что с велосипедами? А вот их еще не ломали — до недавнего момента. В середине августа 2024 года исследователи опубликовали научную работу, в которой они описывают успешную кибератаку на велосипед. Если точнее, то на беспроводную систему переключения скоростей велосипеда с технологией Shimano Di2.
      Электронные переключатели скоростей: Shimano Di2 и не только
      Стоит сделать несколько пояснений для тех, кто не очень разбирается в велосипедах и новейших трендах в велотехнологиях. Начнем с того, что японская компания Shimano — это крупнейший в мире производитель ключевых компонентов для велосипедов, таких как трансмиссии, тормозные системы и так далее. В первую очередь Shimano специализируется на традиционном механическом оборудовании, однако уже достаточно давно — еще с 2001 года — компания экспериментирует с переходом на электронику.
      Классические системы переключения скоростей в велосипедах полагались на тросики, которые физически соединяют переключатели с ручками переключения (манетками) на руле. В электронных системах такой физической связи нет: манетка отправляет переключателю команду, а тот меняет передачу с помощью небольшого электромоторчика.
      Электронные системы переключения передач в велосипедах бывают и проводными — в этом случае между манеткой и переключателем вместо тросика протянут провод, по которому передаются команды. Но в последнее время стало модным использование беспроводных систем, в которых манетка отправляет команды переключателю в виде радиосигнала.
      На данный момент электронные системы переключения скоростей Shimano Di2 доминируют в более дорогой и профессиональной части продуктовой линейки японской компании. То же происходит и в модельных рядах главных конкурентов производителя — американской SRAM (которая представила беспроводные переключатели передач первой) и итальянской Campagnolo.
      Иными словами, значительную часть дорожных, гравийных и горных велосипедов верхнего ценового диапазона уже некоторое время оснащают электронными переключателями передач — и все чаще это именно беспроводные системы.
      В случае Shimano Di2 беспроводная система на самом деле не такая уж беспроводная: проводов внутри рамы велосипеда все равно остается немало: A и B — провода от аккумулятора к переднему и заднему переключателям скоростей, соответственно. Источник
       
      View the full article
×
×
  • Создать...