Технологиии защиты корпоративных компютеров
-
Похожий контент
-
Автор pacificae
Доброго времени. Исходные данные - на клиентском ПК отключил вручную защиту KES бессрочно. Вопрос - можно ли через KSC (в моем случае 13) включить защиту удалённо?
-
Автор KL FC Bot
В апреле, с выходом Google Chrome 136, наконец решена проблема приватности, которая есть во всех крупных браузерах и о которой широко известно с 2002 года. Причем еще 15 лет назад зарегистрирована ее массовая эксплуатация недобросовестными маркетологами. Это угрожающее описание имеет известная и, казалось бы, безобидная функция, элемент удобства: когда вы посетили какой-то сайт, ссылку на него ваш браузер начинает показывать другим цветом.
«А хотите, я его кликну? Он станет фиолетовым в крапинку…»
Менять цвет ссылки на посещенные сайты (по умолчанию — с синего на фиолетовый) придумали 32 года назад в браузере NCSA Mosaic, и оттуда эту удобную для пользователя практику заимствовали практически все браузеры девяностых. Затем она вошла и в стандарт стилизации веб-страниц, CSS. По умолчанию такое перекрашивание работает во всех популярных браузерах и сегодня.
Еще в 2002 году исследователи обратили внимание, что этой системой можно злоупотреблять: на странице можно разместить сотни или тысячи невидимых ссылок и с помощью JavaScript проверять, какие из них браузер раскрашивает, как посещенные. Таким образом, посторонний сайт может частично раскрыть историю веб-браузинга пользователя.
В 2010 году исследователи обнаружили, что этой технологией пользуются на практике: нашлись крупные сайты, шпионящие за историей веб-браузинга своих посетителей. В их числе были YouPorn, TwinCities и еще 480 популярных на тот момент сайтов. Услугу анализа чужой истории предлагали сервисы Tealium и Beencounter, а против рекламной фирмы interclick, внедрившей эту технологию для аналитики, был подан судебный иск. Суд фирма выиграла, но производители основных браузеров изменили код обработки ссылок, чтобы считывать состояние посещенности ссылок «в лоб» стало невозможно.
Но развитие веб-технологий создавало новые обходные пути для подглядывания за историей посещений сайтов, хранимой браузером. Исследование 2018 года описало четыре новых способа проверять состояние ссылок, причем к двум из них были уязвимы все протестированные браузеры, кроме Tor Browser, а один из дефектов, CVE-2018-6137, позволял проверять посещенные пользователем сайты со скоростью до 3000 ссылок в секунду. Новые, все более сложные атаки по извлечению истории веб-браузинга, продолжают появляться и сейчас.
View the full article
-
Автор KL FC Bot
Сейчас практически невозможно представить себе современную компанию, которая не рассказывает о применении искусственного интеллекта. Причем маркетологи далеко не всегда утруждают себя объяснением того, зачем ИИ в продукте нужен, а главное, как именно он там реализован, — им кажется, что самого факта применения достаточно для того, чтобы сделать продукт более ценным, инновационным и высокотехнологичным. Мы сторонники другого подхода — нам важно не просто сказать «у нас есть ИИ», а объяснить, как именно технологии машинного обучения и искусственного интеллекта применяются в наших решениях. Перечислять все наши ИИ-технологии в одном посте было бы слишком долго — у нас есть целый центр экспертизы AI Technology Research, который занимается различными аспектами ИИ. Поэтому в данном материале я сосредоточусь исключительно на технологиях, облегчающих жизнь SIEM-аналитика, работающего с Kaspersky Unified Monitoring and Analysis (KUMA).
SIEM AI Asset Risk Scoring
Традиционно одной из самых ресурсоемких задач аналитика SIEM является приоритизация алертов. Особенно если система только установлена и работает с дефолтными правилами корреляции из коробки, пока еще не подогнанными к реалиям конкретной компании. Помочь с этой проблемой могут технологии анализа больших данных и системы искусственного интеллекта — благодаря модулю SIEM AI Asset Risk Scoring команды мониторинга и реагирования могут определять приоритеты алертов и предотвращать потенциальный ущерб. Этот модуль служит для оценки рисков активов путем анализа исторических данных и тем самым помогает приоритизировать входящие оповещения, что, в свою очередь, ускоряет проведение триажа и позволяет генерировать гипотезы, которые можно использовать для проактивного поиска.
На базе информации об активируемых цепочках правил корреляции SIEM AI Asset Risk Scoring позволяет строить паттерны нормальной активности на конечных точках. Затем, сравнивая с этими паттернами повседневную активность, модуль выявляет аномалии (например, резкие скачки трафика или множественные обращения к сервисам), которые могут говорить о том, что происходит реальный инцидент и аналитику следует глубже изучить именно эти алерты. Это позволяет обнаружить проблему на ранней стадии, до того как будет нанесен ущерб.
View the full article
-
Автор KL FC Bot
Генерация программного кода стала одной из сфер, где ИИ уже внедрен достаточно широко, — по некоторым оценкам, за минувший год около 40% нового кода было написано ИИ. CTO Microsoft считает, что через пять лет эта цифра достигнет 95%. Этот код еще предстоит научиться правильно сопровождать и защищать.
Безопасность ИИ-кода эксперты пока оценивают как невысокую, в нем систематически встречаются все классические программные дефекты: уязвимости (SQL-инъекции, вшитые в код токены и секреты, небезопасная десериализация, XSS), логические дефекты, использование устаревших API, небезопасные алгоритмы шифрования и хеширования, отсутствие обработки ошибок и некорректного пользовательского ввода и многое другое. Но использование ИИ-ассистента в разработке ПО добавляет еще одну неожиданную проблему — галлюцинации. В новом исследовании авторы подробно изучили, как на ИИ-код влияют галлюцинации больших языковых моделей. Оказалось, что некоторых сторонних библиотек, которые ИИ пытается использовать в своем коде, просто не существует в природе.
Вымышленные зависимости в open source и коммерческих LLM
Для изучения фантомных библиотек исследователи сгенерировали 576 тысяч фрагментов кода на Python и JavaScript с помощью 16 популярных LLM.
Модели выдумывали зависимости с разной частотой: реже всего галлюцинировали GPT4 и GPT4 Turbo (вымышленные библиотеки встретились менее чем в 5% образцов кода), у моделей DeepSeek этот показатель уже превышает 15%, а сильнее всего ошибается Code Llama 7B (более 25% фрагментов кода ссылаются на несуществующие библиотеки). При этом параметры генерации, которые снижают вероятность проникновения случайных токенов в выдачу модели (температура, top-p, top-k), все равно не могут снизить частоту галлюцинаций до незначительных величин.
Код на Python содержал меньше вымышленных зависимостей (16%) по сравнению с кодом на JavaScript (21%). Результат также зависит от того, насколько стара тема разработки. Если при генерации пытаться использовать пакеты, технологии и алгоритмы, ставшие популярными за последний год, несуществующих пакетов становится на 10% больше.
Самая опасная особенность вымышленных пакетов — их имена не случайны, а нейросети ссылаются на одни и те же библиотеки снова и снова. На втором этапе эксперимента авторы отобрали 500 запросов, которые ранее спровоцировали галлюцинации, и повторили каждый из них 10 раз. Оказалось, что 43% вымышленных пакетов снова возникают при каждой генерации кода.
Интересна и природа имен вымышленных пакетов. 13% были типичными «опечатками», отличающимися от настоящего имени пакета всего на один символ, 9% имен пакетов были заимствованы из другого языка разработки (код на Python, пакеты из npm), еще 38% были логично названы, но отличались от настоящих пакетов более значительно.
View the full article
-
Автор Союз потребобществ РК
Здравствуйте, наша организация каждый год приобретает ключи на продление антивируса Касперского для бизнеса. В новом периоде у нас появились 2 компьютера, на которых не было установлено ключей на антивирус. Можем ли мы установить на эти компьютеры бесплатную пробную версию антивируса, затем приобрести и установить ключ на продление?
-
Рекомендуемые сообщения
Пожалуйста, войдите, чтобы комментировать
Вы сможете оставить комментарий после входа в
Войти