Усиление сигнала модема
-
Похожий контент
-
Автор ska79
usb блютуз адаптер орико, брал на алиэкспресс. Если слушать музыку рядом с пк то всё норм, но стоит зайти в туалет как соединеие начинает прерываться. Подпаял к плате адаптера провод, думал сигнал будет лучше - небольшие улучшения есть, но в основном также соединение нестабильно. Как можно усилить сигнал синезуба? Или может быть есть репитеры бт сигнала в продаже?
Если подключаю наушники к смартфону смартфон остается рядом с ПК, то соединение бт стабильно (в смысле со смартфоном конект наушников стабилен).
-
Автор KL FC Bot
В сотовых M2M-модемах Telit Cinterion были обнаружены несколько серьезных уязвимостей, включая возможность удаленного выполнения произвольного кода (RCE) посылкой SMS-сообщений. Эти модемы используются в миллионах разнообразных устройств и систем, предназначенных как для пользовательского сегмента рынка (платежные терминалы, банкоматы, автомобили), так и для здравоохранения, финансового сектора, телекоммуникации, промышленности и многих других целей. Рассказываем подробнее о выявленных уязвимостях и о том, как от них можно защититься.
Критические уязвимости в модемах Cinterion
В общей сложности эксперты Kaspersky ICS-CERT обнаружили в модемах Telit Cinterion семь уязвимостей нулевого дня:
CVE-2023-47610 / KLCERT-23-018: с помощью отправки особым образом созданных SMS атакующий получает возможность удаленного выполнения кода (RCE) в системе. CVE-2023-47611 / KLCERT-22-216: позволяет атакующему с низкими привилегиями в системе повысить их до уровня «manufacturer» (производитель). CVE-2023-47612 / KLCERT-22-194: имея физический доступ к устройству, атакующий получает возможность чтения и записи любых файлов и папок в системе, включая скрытые. CVE-2023-47613 / KLCERT-22-211: позволяет атакующему с низкими привилегиями в системе совершить побег из виртуальной папки и получить доступ к чтению и записи защищенных файлов. CVE-2023-47614 / KLCERT-22-210: позволяет атакующему с низкими привилегиями в системе обнаружить скрытые виртуальные пути и имена файлов. CVE-2023-47615 / KLCERT-22-212: позволяет атакующему с низкими привилегиями в системе получить несанкционированный доступ к конфиденциальным данным. CVE-2023-47616 / KLCERT-22-193: имея физический доступ к устройству, атакующий может получить несанкционированный доступ к конфиденциальным данным. Наибольшую опасность представляет собой первая уязвимость из этого списка (CVE-2023-47610). В числе прочего эта уязвимость позволяет манипулировать памятью и флеш-накопителем модема, что в итоге дает возможность получить полный контроль над системой. При этом для атаки не требуется ни физический доступ к устройству, ни аутентификация на нем.
Посмотреть статью полностью
-
Автор KL FC Bot
Для того чтобы найти человека, Диоген, как известно, использовал фонарь — философ полагался исключительно на оптические методы распознавания. Современные же ученые предлагают применять для этих целей сигнал Wi-Fi. Если быть точным, то методика, разработанная тремя исследователями из Университета Карнеги-Меллона, использует сигнал обычного домашнего Wi-Fi-роутера для того, чтобы достаточно точно распознавать не только местоположение, но и позы людей в помещении.
Почему Wi-Fi? Для этого есть несколько причин. Во-первых, в отличие от оптического распознавания, радиосигнал отлично работает в темноте и ему не мешают мелкие препятствия вроде мебели. Во-вторых, это дешево, чего нельзя сказать о лидарах и радарах, которые в целом тоже способны справиться с задачей. В-третьих, Wi-Fi уже повсеместно распространен — бери и пользуйся. Остается понять, насколько этот метод рабочий и чего с его помощью можно достичь, — давайте же в этом разберемся.
DensePose: методика распознавания человеческих поз на изображениях
Начать, впрочем, придется немного издалека — сперва следует разобраться с тем, как в целом работает точное распознавание человеческого тела и его позы. В 2018 году другая группа ученых представила методику под названием DensePose. С ее помощью они успешно распознавали человеческие позы на фотографиях — сугубо на основе двумерных картинок, без использования данных о третьей координате — глубине.
Вот как это работает. Для начала модель DensePose ищет на изображениях объекты, которые распознаются как человеческие тела. Далее эти объекты разделяются на отдельные участки, которые сопоставляются с теми или иными частями тела — каждая из них обрабатывается отдельно. Такой подход используется потому, что разные части тела двигаются очень по-разному: например, голова и торс ведут себя совсем не так, как руки и ноги.
Посмотреть статью полностью
-
Автор Danielb
Почистил компьютер перед новым годом от пыли мыл только башню процессора собераю компьютер компьютер сначала не показывал ничего не картинки не сигнала сбросил Биос с помощью Qflasзаработала подсветка на мышки и на клавиатуре до этого не было и появились на корпусе помигивание красный светодиод
-
Рекомендуемые сообщения
Пожалуйста, войдите, чтобы комментировать
Вы сможете оставить комментарий после входа в
Войти