-
Похожий контент
-
Автор KL FC Bot
Сейчас практически невозможно представить себе современную компанию, которая не рассказывает о применении искусственного интеллекта. Причем маркетологи далеко не всегда утруждают себя объяснением того, зачем ИИ в продукте нужен, а главное, как именно он там реализован, — им кажется, что самого факта применения достаточно для того, чтобы сделать продукт более ценным, инновационным и высокотехнологичным. Мы сторонники другого подхода — нам важно не просто сказать «у нас есть ИИ», а объяснить, как именно технологии машинного обучения и искусственного интеллекта применяются в наших решениях. Перечислять все наши ИИ-технологии в одном посте было бы слишком долго — у нас есть целый центр экспертизы AI Technology Research, который занимается различными аспектами ИИ. Поэтому в данном материале я сосредоточусь исключительно на технологиях, облегчающих жизнь SIEM-аналитика, работающего с Kaspersky Unified Monitoring and Analysis (KUMA).
SIEM AI Asset Risk Scoring
Традиционно одной из самых ресурсоемких задач аналитика SIEM является приоритизация алертов. Особенно если система только установлена и работает с дефолтными правилами корреляции из коробки, пока еще не подогнанными к реалиям конкретной компании. Помочь с этой проблемой могут технологии анализа больших данных и системы искусственного интеллекта — благодаря модулю SIEM AI Asset Risk Scoring команды мониторинга и реагирования могут определять приоритеты алертов и предотвращать потенциальный ущерб. Этот модуль служит для оценки рисков активов путем анализа исторических данных и тем самым помогает приоритизировать входящие оповещения, что, в свою очередь, ускоряет проведение триажа и позволяет генерировать гипотезы, которые можно использовать для проактивного поиска.
На базе информации об активируемых цепочках правил корреляции SIEM AI Asset Risk Scoring позволяет строить паттерны нормальной активности на конечных точках. Затем, сравнивая с этими паттернами повседневную активность, модуль выявляет аномалии (например, резкие скачки трафика или множественные обращения к сервисам), которые могут говорить о том, что происходит реальный инцидент и аналитику следует глубже изучить именно эти алерты. Это позволяет обнаружить проблему на ранней стадии, до того как будет нанесен ущерб.
View the full article
-
Автор KL FC Bot
В какой-то момент ИБ-департамент крупной компании неизбежно задумывается о внедрении или замене SIEM-системы и сталкивается с задачей оценки бюджета, необходимого для ее внедрения. Но SIEM — это не легковесный продукт, который можно развернуть в имеющейся инфраструктуре. Практически все решения этого класса требуют дополнительного оборудования, так что для их работы придется приобретать аппаратное обеспечение (или арендовать его).
Поэтому для расчетов бюджета необходимо представлять себе предполагаемую конфигурацию оборудования. В этом посте мы попробуем рассказать о том, как архитектура SIEM влияет на требования к аппаратной составляющей, а также предоставим примерные параметры, на которые стоит ориентироваться, чтобы определить предварительную стоимость необходимого оборудования.
Оценка потока информации
По своей сути SIEM-система собирает данные о событиях с источников и на основании корреляции этих данных выявляет угрозы для безопасности. Поэтому, прежде чем прикидывать, какое железо необходимо для работы системы, стоит оценить, а какой, собственно, объем информации эта система будет обрабатывать и хранить. Для того чтобы понять, какие источники потребуются, следует выделить наиболее критичные риски и определить источники данных, анализ которых поможет в выявлении и анализе угроз, связанных с этими рисками. Такая оценка нужна не только для расчета необходимого аппаратного обеспечения, но и для оценки стоимости лицензии. Например, стоимость лицензии на нашу систему KUMA (Kaspersky Unified Monitoring and Analysis Platform) напрямую зависит от количества событий в секунду (Events Per Second, EPS). И еще один важный аспект — при выборе SIEM-системы важно проверить, как именно вендор считает количество событий для лицензирования. Мы, например, учитываем количество EPS после фильтрации и агрегации, причем мы считаем среднее количество событий за последние 24 часа, а не их пиковые значения, но так поступают далеко не все.
View the full article
-
Автор KL FC Bot
Недавно нашему бывшему коллеге пришла подозрительная нотификация от неизвестного ему сервиса GetGhared. Будучи человеком осторожным, он не стал переходить по ссылке, а сразу переслал уведомление нам. Проанализировав письмо, мы выяснили, что это действительно работа мошенников, а судя по статистике наших почтовых защитных решений, сервис для отправки больших файлов GetShared стал использоваться ими достаточно часто. Рассказываем, как выглядит применение GetShared в атаках, зачем злоумышленникам это нужно и как оставаться в безопасности.
Как выглядит атака при помощи GetShared
Жертве приходит вполне обычное, совершенно настоящее уведомление от сервиса GetShared, в котором говорится, что пользователю был прислан файл. В письме указаны название и расширение этого файла — например, в случае с атакой на компанию нашего коллеги это был DESIGN LOGO.rar.
Пример мошеннического письма, распространяемого через уведомление GetShared
В сопровождающем тексте применяется стандартная фишинговая уловка — мошенники запрашивают цены на что-то, якобы перечисленное в приложении, а для большей убедительности просят уточнить время доставки и условия оплаты.
View the full article
-
Автор KL FC Bot
В последние годы в блоге Kaspersky Daily мы стали уделять ransomware заметно меньше внимания, чем в былые времена. Но это вовсе не потому, что атаки вымогателей прекратились. Скорее наоборот — такие инциденты происходят настолько часто, что они уже давно стали привычным, практически фоновым явлением.
Однако некоторые атаки вымогателей по-прежнему привлекают внимание своей экстраординарностью. В этом посте мы перечислим связанные с шифровальщиками-вымогателями инциденты 2024 года, которые выделялись на общем фоне своим масштабом, последствиями или необычными методами атакующих.
Январь 2024: атака вымогателей на зоопарк Торонто
Одним из первых значительных инцидентов 2024 года, связанных с ransomware, стала январская атака на крупнейший канадский зоопарк, расположенный в Торонто. Администрация зоопарка поспешила заверить общественность в том, что атака вымогателей не повлияла на работоспособность систем, связанных с уходом за животными. Более того, веб-сайт организации и сервис продажи билетов также не были затронуты, так что зоопарк продолжил принимать посетителей в обычном режиме.
Официальный сайт зоопарка Торонто сообщает о кибератаке и уверяет, что с животными все в порядке. Источник
Через некоторое время после атаки выяснилось, что атакующим удалось похитить значительное количество личной информации сотрудников зоопарка за период с 1989 года до наших дней. Таким образом, данный инцидент послужил очередным напоминанием о том, что даже очень далекие от критических секторов организации могут стать объектами атак вымогателей.
View the full article
-
Автор KL FC Bot
Исследователь обнаружил уязвимость в PyTorch, фреймворке машинного обучения с открытым исходным кодом. Уязвимость, зарегистрированная под номером CVE-2025-32434, относится к классу Remote Code Execution (RCE) и имеет рейтинг 9,3 по шкале CVSS, то есть категорируется как критическая. Эксплуатация CVE-2025-32434 при определенных условиях позволяет злоумышленнику запускать на компьютере жертвы, скачивающей ИИ-модель произвольный код. Всем, кто использует PyTorch для работы с нейросетями, рекомендуется как можно скорее обновить фреймворк до последней версии.
Суть уязвимости CVE-2025-32434
Фреймворк PyTorch, помимо всего прочего, позволяет сохранять уже обученные модели в файл, который хранит веса связей. И, разумеется, загружать их при помощи функции torch.load(). Обученные модели часто выкладываются в общий доступ через разнообразные публичные репозитории и теоретически в них могут быть вредоносные закладки. Поэтому официальная документация проекта в целях безопасности рекомендует использовать функцию torch.load() с параметром weights_only=True (в таком случае загружаются только примитивные типы данных: словари, тензоры, списки, и так далее).
Уязвимость CVE-2025-32434 заключается в некорректно реализованном механизме десериализации при загрузке модели. Обнаруживший ее исследователь продемонстрировал, что атакующий может создать файл модели таким способом, что параметр weights_only=True приведет к прямо противоположному эффекту — при загрузке будет выполнен произвольный код, способный скомпрометировать среду, в котором запускается модель.
View the full article
-
Рекомендуемые сообщения
Пожалуйста, войдите, чтобы комментировать
Вы сможете оставить комментарий после входа в
Войти