-
Похожий контент
-
Автор KL FC Bot
Недавно нашему бывшему коллеге пришла подозрительная нотификация от неизвестного ему сервиса GetGhared. Будучи человеком осторожным, он не стал переходить по ссылке, а сразу переслал уведомление нам. Проанализировав письмо, мы выяснили, что это действительно работа мошенников, а судя по статистике наших почтовых защитных решений, сервис для отправки больших файлов GetShared стал использоваться ими достаточно часто. Рассказываем, как выглядит применение GetShared в атаках, зачем злоумышленникам это нужно и как оставаться в безопасности.
Как выглядит атака при помощи GetShared
Жертве приходит вполне обычное, совершенно настоящее уведомление от сервиса GetShared, в котором говорится, что пользователю был прислан файл. В письме указаны название и расширение этого файла — например, в случае с атакой на компанию нашего коллеги это был DESIGN LOGO.rar.
Пример мошеннического письма, распространяемого через уведомление GetShared
В сопровождающем тексте применяется стандартная фишинговая уловка — мошенники запрашивают цены на что-то, якобы перечисленное в приложении, а для большей убедительности просят уточнить время доставки и условия оплаты.
View the full article
-
Автор KL FC Bot
Исследователь обнаружил уязвимость в PyTorch, фреймворке машинного обучения с открытым исходным кодом. Уязвимость, зарегистрированная под номером CVE-2025-32434, относится к классу Remote Code Execution (RCE) и имеет рейтинг 9,3 по шкале CVSS, то есть категорируется как критическая. Эксплуатация CVE-2025-32434 при определенных условиях позволяет злоумышленнику запускать на компьютере жертвы, скачивающей ИИ-модель произвольный код. Всем, кто использует PyTorch для работы с нейросетями, рекомендуется как можно скорее обновить фреймворк до последней версии.
Суть уязвимости CVE-2025-32434
Фреймворк PyTorch, помимо всего прочего, позволяет сохранять уже обученные модели в файл, который хранит веса связей. И, разумеется, загружать их при помощи функции torch.load(). Обученные модели часто выкладываются в общий доступ через разнообразные публичные репозитории и теоретически в них могут быть вредоносные закладки. Поэтому официальная документация проекта в целях безопасности рекомендует использовать функцию torch.load() с параметром weights_only=True (в таком случае загружаются только примитивные типы данных: словари, тензоры, списки, и так далее).
Уязвимость CVE-2025-32434 заключается в некорректно реализованном механизме десериализации при загрузке модели. Обнаруживший ее исследователь продемонстрировал, что атакующий может создать файл модели таким способом, что параметр weights_only=True приведет к прямо противоположному эффекту — при загрузке будет выполнен произвольный код, способный скомпрометировать среду, в котором запускается модель.
View the full article
-
Автор KL FC Bot
Информационный поток с каждым днем не уменьшается, и в 2025 году в нашей голове остается все меньше места для таких вещей, как пароль к той самой почте, которую вы завели в далеком 2020, чтобы зарегистрировать маму на маркетплейсе. Во Всемирный день пароля, выпадающий в этом году на 1 мая, День труда, предлагаем потрудиться и объединиться в борьбе против забывчивости, слабых паролей и хакеров.
Как уже не раз подтверждали наши эксперты, целевая компрометация пароля — лишь вопрос времени и средств, причем зачастую — очень короткого времени и копеечных средств. И наша задача — максимально усложнить этот процесс, напрочь отбив желание у взломщиков заниматься именно вашими данными.
В прошлогоднем исследовании мы выяснили, что 59% всех паролей мира могут быть взломаны менее чем за час при помощи умных алгоритмов, требующих мощной видеокарты вроде RTX 4090 или дешевой аренды облачных вычислительных мощностей. Сейчас мы проводим второй этап исследования и скоро расскажем, изменилась ли ситуация за год к лучшему или нет, так что подписывайтесь на наш блог или телеграм-канал, чтобы первыми узнать о результатах.
Сегодня мы не просто расскажем о наиболее безопасных методах аутентификации и способах создания сложных паролей, но и обсудим техники их запоминания, а также ответим на вопрос, почему использовать менеджер паролей в 2025 году — действительно хорошая идея.
Как безопаснее логиниться в 2025 году
Сейчас у нас достаточно вариантов, с помощью которых можно проходить аутентификацию в сервисах и на веб-сайтах:
классическая связка логин-пароль; аутентификация с помощью стороннего сервиса (VK, Яндекс, Apple, Google и т. д.); двухфакторная аутентификация с подтверждением: через SMS с одноразовым кодом; через приложение-аутентификатор (например, Kaspersky Password Manager, Google Authenticator или Microsoft Authenticator); с применением аппаратного ключа (например, Flipper, YubiKey или USB-токена); использование passkey и биометрической аутентификации. Разумеется, каждый из этих способов можно как усилить, например создать сложный пароль из 20+ случайных символов, так и ослабить, допустим, оставляя токен в USB-порту, а сам компьютер — без присмотра в публичных местах. И потому время «классических» паролей еще не прошло. Поэтому давайте разбираться, как мы можем усилить наши текущие позиции: придумать и запомнить незабываемый пароль.
View the full article
-
Автор KL FC Bot
Генерация программного кода стала одной из сфер, где ИИ уже внедрен достаточно широко, — по некоторым оценкам, за минувший год около 40% нового кода было написано ИИ. CTO Microsoft считает, что через пять лет эта цифра достигнет 95%. Этот код еще предстоит научиться правильно сопровождать и защищать.
Безопасность ИИ-кода эксперты пока оценивают как невысокую, в нем систематически встречаются все классические программные дефекты: уязвимости (SQL-инъекции, вшитые в код токены и секреты, небезопасная десериализация, XSS), логические дефекты, использование устаревших API, небезопасные алгоритмы шифрования и хеширования, отсутствие обработки ошибок и некорректного пользовательского ввода и многое другое. Но использование ИИ-ассистента в разработке ПО добавляет еще одну неожиданную проблему — галлюцинации. В новом исследовании авторы подробно изучили, как на ИИ-код влияют галлюцинации больших языковых моделей. Оказалось, что некоторых сторонних библиотек, которые ИИ пытается использовать в своем коде, просто не существует в природе.
Вымышленные зависимости в open source и коммерческих LLM
Для изучения фантомных библиотек исследователи сгенерировали 576 тысяч фрагментов кода на Python и JavaScript с помощью 16 популярных LLM.
Модели выдумывали зависимости с разной частотой: реже всего галлюцинировали GPT4 и GPT4 Turbo (вымышленные библиотеки встретились менее чем в 5% образцов кода), у моделей DeepSeek этот показатель уже превышает 15%, а сильнее всего ошибается Code Llama 7B (более 25% фрагментов кода ссылаются на несуществующие библиотеки). При этом параметры генерации, которые снижают вероятность проникновения случайных токенов в выдачу модели (температура, top-p, top-k), все равно не могут снизить частоту галлюцинаций до незначительных величин.
Код на Python содержал меньше вымышленных зависимостей (16%) по сравнению с кодом на JavaScript (21%). Результат также зависит от того, насколько стара тема разработки. Если при генерации пытаться использовать пакеты, технологии и алгоритмы, ставшие популярными за последний год, несуществующих пакетов становится на 10% больше.
Самая опасная особенность вымышленных пакетов — их имена не случайны, а нейросети ссылаются на одни и те же библиотеки снова и снова. На втором этапе эксперимента авторы отобрали 500 запросов, которые ранее спровоцировали галлюцинации, и повторили каждый из них 10 раз. Оказалось, что 43% вымышленных пакетов снова возникают при каждой генерации кода.
Интересна и природа имен вымышленных пакетов. 13% были типичными «опечатками», отличающимися от настоящего имени пакета всего на один символ, 9% имен пакетов были заимствованы из другого языка разработки (код на Python, пакеты из npm), еще 38% были логично названы, но отличались от настоящих пакетов более значительно.
View the full article
-
Автор KL FC Bot
Поучительный инцидент с атакой ransomware-группировки Akira наверняка на несколько лет станет любимым примером ИБ-специалистов. Злоумышленники зашифровали компьютеры организации, воспользовавшись ее видеокамерой. Хотя звучит это очень странно, в развитии событий есть логика, которую легко применить к другой организации и другим устройствам в ее инфраструктуре.
Анатомия атаки
Злоумышленники проникли в сеть, проэксплуатировав уязвимость в публично доступном приложении и получив возможность выполнять команды на зараженном хосте. Они воспользовались этим, чтобы запустить популярное приложение дистанционного доступа AnyDesk, а затем инициировали с этого компьютера RDP-сессию для доступа к файл-серверу организации. На сервере они попытались запустить свой шифровальщик, но EDR-система, установленная в компании, опознала вредоносное ПО и поместила его в карантин. Увы, это не остановило атакующих.
Не имея возможности запустить свой шифровальщик на серверах и обычных компьютерах, которые находятся под защитой EDR, атакующие запустили сканирование внутренней сети и обнаружили в ней сетевую видеокамеру. В отчете команды по расследованию инцидента это устройство постоянно называют веб-камерой (webcam), но мы все же полагаем, что речь не о камере ноутбука или смартфона, а о независимом сетевом устройстве, применяемом для видеонаблюдения.
Камера стала прекрасной мишенью для атакующих по нескольким причинам:
устройство давно не обновлялось, его прошивка содержала уязвимости, позволяющие дистанционно скомпрометировать камеру и получить на ней права на запуск оболочки (remote shell); камера работает под управлением облегченной сборки Linux, на которой можно запускать обычные исполнимые файлы этой ОС, например Linux-шифровальщик, имеющийся в арсенале Akira; это специализированное устройство не имело (и, скорее всего, не могло иметь) ни агента EDR, ни других защитных средств, которые могли бы определить вредоносную активность. Злоумышленники смогли установить свое вредоносное ПО на эту камеру и зашифровать серверы организации прямо с нее.
View the full article
-
Рекомендуемые сообщения
Пожалуйста, войдите, чтобы комментировать
Вы сможете оставить комментарий после входа в
Войти