Перейти к содержанию

Суперкомпьютер из видеокарты: задействуем возможности GPU для ускорения софта


den_prox

Рекомендуемые сообщения

Сегодня новости об использовании графических процессоров для общих вычислений можно услышать на каждом углу. Такие слова, как CUDA, Stream и OpenCL, за каких-то два года стали чуть ли не самыми цитируемыми в айтишном интернете. Однако, что значат эти слова, и что несут стоящие за ними технологии, известно далеко не каждому. А для линуксоидов, привыкших "быть в пролете", так и вообще все это видится темным лесом.

 

Предисловие

В этой статье мы попытаемся разобраться, зачем нужна технология GPGPU (General-purpose graphics processing units, Графический процессор общего назначения) и все связанные с ней реализации от конкретных производителей. Узнаем, почему эта технология имеет очень узкую сферу применения, в которую подавляющее большинство софта не попадает в принципе, и конечно же, попытаемся извлечь из всего этого выгоду в виде существенных приростов производительности в таких задачах, как шифрование, подбор паролей, работа с мультимедиа и архивирование.

 

Рождение GPGPU

Мы все привыкли думать, что единственным компонентом компа, способным выполнять любой код, который ему прикажут, является центральный процессор. Долгое время почти все массовые ПК оснащались единственным процессором, который занимался всеми мыслимыми расчетами, включая код операционной системы, всего нашего софта и вирусов.

 

Позже появились многоядерные процессоры и многопроцессорные системы, в которых таких компонентов было несколько. Это позволило машинам выполнять несколько задач одновременно, а общая (теоретическая) производительность системы поднялась ровно во столько раз, сколько ядер было установлено в машине. Однако оказалось, что производить и конструировать многоядерные процессоры слишком сложно и дорого. В каждом ядре приходилось размещать полноценный процессор сложной и запутанной x86-архитектуры, со своим (довольно объемным) кэшем, конвейером инструкций, блоками SSE, множеством блоков, выполняющих оптимизации и т.д. и т.п. Поэтому процесс наращивания количества ядер существенно затормозился, и белые университетские халаты, которым два или четыре ядра было явно мало, нашли способ задействовать для своих научных расчетов другие вычислительные мощности, которых было в достатке на видеокарте (в результате даже появился инструмент BrookGPU, эмулирующий дополнительный процессор с помощью вызовов функций DirectX и OpenGL).

 

Графические процессоры, лишенные многих недостатков центрального процессора, оказались отличной и очень быстрой счетной машинкой, и совсем скоро к наработкам ученых умов начали присматриваться сами производители GPU (а nVidia так и вообще наняла большинство исследователей на работу). В результате появилась технология nVidia CUDA, определяющая интерфейс, с помощью которого стало возможным перенести вычисление сложных алгоритмов на плечи GPU без каких-либо костылей. Позже за ней последовала ATi (AMD) с собственным вариантом технологии под названием Close to Metal (ныне Stream), а совсем скоро появилась ставшая стандартом версия от Apple, получившая имя OpenCL.

 

GPU — наше все?

Несмотря на все преимущества, техника GPGPU имеет несколько проблем. Первая из них заключается в очень узкой сфере применения. GPU шагнули далеко вперед центрального процессора в плане наращивания вычислительной мощности и общего количества ядер (видеокарты несут на себе вычислительный блок, состоящий из более чем сотни ядер), однако такая высокая плотность достигается за счет максимального упрощения дизайна самого чипа.

 

В сущности основная задача GPU сводится к математическим расчетам с помощью простых алгоритмов, получающих на вход не очень большие объемы предсказуемых данных. По этой причине ядра GPU имеют очень простой дизайн, мизерные объемы кэша и скромный набор инструкций, что в конечном счете и выливается в дешевизну их производства и возможность очень плотного размещения на чипе. GPU похожи на китайскую фабрику с тысячами рабочих. Какие-то простые вещи они делают достаточно хорошо (а главное — быстро и дешево), но если доверить им сборку самолета, то в результате получится максимум дельтаплан. Поэтому первое ограничение GPU — это ориентированность на быстрые математические расчеты, что ограничивает сферу применения графических процессоров помощью в работе мультимедийных приложений, а также любых программ, занимающихся сложной обработкой данных (например, архиваторов или систем шифрования, а также софтин, занимающихся флуоресцентной микроскопией, молекулярной динамикой, электростатикой и другими, малоинтересными для линуксоидов вещами).

 

Вторая проблема GPGPU в том, что адаптировать для выполнения на GPU можно далеко не каждый алгоритм. Отдельно взятые ядра графического процессора довольно медлительны, и их мощь проявляется только при работе сообща. А это значит, что алгоритм будет настолько эффективным, насколько эффективно его сможет распараллелить программист. В большинстве случаев с такой работой может справиться только хороший математик, которых среди разработчиков софта совсем немного.

 

И третье: графические процессоры работают с памятью, установленной на самой видеокарте, так что при каждом задействовании GPU будет происходить две дополнительных операции копирования: входные данные из оперативной памяти самого приложения и выходные данные из GRAM обратно в память приложения. Нетрудно догадаться, что это может свести на нет весь выигрыш во времени работы приложения (как и происходит в случае с инструментом FlacCL, который мы рассмотрим позже).

 

Но и это еще не все. Несмотря на существование общепризнанного стандарта в лице OpenCL, многие программисты до сих пор предпочитают использовать привязанные к производителю реализации техники GPGPU. Особенно популярной оказалась CUDA, которая хоть и дает более гибкий интерфейс программирования (кстати, OpenCL в драйверах nVidia реализован поверх CUDA), но намертво привязывает приложение к видеокартам одного производителя.

 

KGPU или ядро Linux, ускоренное GPU

Исследователи из университета Юты разработали систему KGPU, позволяющую выполнять некоторые функции ядра Linux на графическом процессоре с помощью фреймворка CUDA. Для выполнения этой задачи используется модифицированное ядро Linux и специальный демон, который работает в пространстве пользователя, слушает запросы ядра и передает их драйверу видеокарты с помощью библиотеки CUDA. Интересно, что несмотря на существенный оверхед, который создает такая архитектура, авторам KGPU удалось создать реализацию алгоритма AES, который поднимает скорость шифрования файловой системы eCryptfs в 6 раз.

 

Что есть сейчас?

В силу своей молодости, а также благодаря описанным выше проблемам, GPGPU так и не стала по-настоящему распространенной технологией, однако полезный софт, использующий ее возможности, существует (хоть и в мизерном количестве). Одними из первых появились крэкеры различных хэшей, алгоритмы работы которых очень легко распараллелить. Также родились мультимедийные приложения, например, кодировщик FlacCL, позволяющий перекодировать звуковую дорожку в формат FLAC. Поддержкой GPGPU обзавелись и некоторые уже существовавшие ранее приложения, самым заметным из которых стал ImageMagick, который теперь умеет перекладывать часть своей работы на графический процессор с помощью OpenCL. Также есть проекты по переводу на CUDA/OpenCL (не любят юниксоиды ATi) архиваторов данных и других систем сжатия информации. Наиболее интересные из этих проектов мы рассмотрим в следующих разделах статьи, а пока попробуем разобраться с тем, что нам нужно для того, чтобы все это завелось и стабильно работало.

 

 

GPU уже давно обогнали x86-процессоры в производительности

 

Во-первых, понадобится видеокарта, поддерживающая технологию CUDA или Stream. Необязательно, чтобы она была топовая, достаточно только, чтобы год ее выпуска был не менее 2009. Полный список поддерживаемых видюшек можно посмотреть в Википедии: en.wikipedia.org/wiki/CUDA и en.wikipedia.org/wiki/AMD_Stream_Processor. Также о поддержке той или иной технологии можно узнать, прочитав документацию, хотя в большинстве случаев будет достаточным взглянуть на коробку из под видеокарты или ноутбука, обычно на нее наклеены различные рекламные стикеры.

 

Во-вторых, в систему должны быть установлены последние проприетарные драйвера для видеокарты, они обеспечат поддержку как родных для карточки технологий GPGPU, так и открытого OpenCL.

 

И в-третьих, так как пока дистрибутивостроители еще не начали распространять пакеты приложений с поддержкой GPGPU, нам придется собирать приложения самостоятельно, а для этого нужны официальные SDK от производителей: CUDA Toolkit или ATI Stream SDK. Они содержат в себе необходимые для сборки приложений заголовочные файлы и библиотеки.

 

Ставим CUDA Toolkit

Идем по вышеприведенной ссылке и скачиваем CUDA Toolkit для Linux (выбрать можно из нескольких версий, для дистрибутивов Fedora, RHEL, Ubuntu и SUSE, есть версии как для архитектуры x86, так и для x86_64). Кроме того, там же надо скачать комплекты драйверов для разработчиков (Developer Drivers for Linux, они идут первыми в списке).

 

Запускаем инсталлятор SDK:

 

$ sudo sh cudatoolkit_4.0.17_linux_64_ubuntu10.10.run

 

Когда установка будет завершена, приступаем к установке драйверов. Для этого завершаем работу X-сервера:

 

# sudo /etc/init.d/gdm stop

 

Открываем консоль <Ctrl+Alt+F5> и запускаем инсталлятор драйверов:

 

$ sudo sh devdriver_4.0_linux_64_270.41.19.run

 

После окончания установки стартуем иксы:

 

$ startx

 

Чтобы приложения смогли работать с CUDA/OpenCL, прописываем путь до каталога с CUDA-библиотеками в переменную LD_LIBRARY_PATH:

 

$ export LD_LIBRARY_PATH=/usr/local/cuda/lib64

 

Или, если ты установил 32-битную версию:

 

$ export LD_LIBRARY_PATH=/usr/local/cuda/lib32

 

Также необходимо прописать путь до заголовочных файлов CUDA, чтобы компилятор их нашел на этапе сборки приложения:

 

$ export C_INCLUDE_PATH=/usr/local/cuda/include

 

Все, теперь можно приступить к сборке CUDA/OpenCL-софта.

 

Ставим ATI Stream SDK

Stream SDK не требует установки, поэтому скачанный с сайта AMD-архив можно просто распаковать в любой каталог (лучшим выбором будет /opt) и прописать путь до него во всю ту же переменную LD_LIBRARY_PATH:

 

$ wget http://goo.gl/CNCNo

$ sudo tar -xzf ~/AMD-APP-SDK-v2.4-lnx64.tgz -C /opt

$ export LD_LIBRARY_PATH=/opt/AMD-APP-SDK-v2.4-lnx64/lib/x86_64/

$ export C_INCLUDE_PATH=/opt/AMD-APP-SDK-v2.4-lnx64/include/

 

Как и в случае с CUDA Toolkit, x86_64 необходимо заменить на x86 в 32-битных системах. Теперь переходим в корневой каталог и распаковываем архив icd-registration.tgz (это своего рода бесплатный лицензионный ключ):

 

$ sudo tar -xzf /opt/AMD-APP-SDK-v2.4-lnx64/icd-registration.tgz -С /

 

Проверяем правильность установки/работы пакета с помощью инструмента clinfo:

 

$ /opt/AMD-APP-SDK-v2.4-lnx64/bin/x86_64/clinfo

 

ImageMagick и OpenCL

Поддержка OpenCL появилась в ImageMagick уже достаточно давно, однако по умолчанию она не активирована ни в одном дистрибутиве. Поэтому нам придется собрать IM самостоятельно из исходников. Ничего сложного в этом нет, все необходимое уже есть в SDK, поэтому сборка не потребует установки каких-то дополнительных библиотек от nVidia или AMD. Итак, скачиваем/распаковываем архив с исходниками:

 

$ wget http://goo.gl/F6VYV

$ tar -xjf ImageMagick-6.7.0-0.tar.bz2

$ cd ImageMagick-6.7.0-0

 

Далее устанавливаем инструменты сборки:

 

$ sudo apt-get install build-essential

 

Запускаем конфигуратор и грепаем его вывод на предмет поддержки OpenCL:

 

$ LDFLAGS=-L$LD_LIBRARY_PATH ./confi gure | grep -e cl.h -e OpenCL

 

Правильный результат работы команды должен выглядеть примерно так:

 

checking CL/cl.h usability... yes

checking CL/cl.h presence... yes

checking for CL/cl.h... yes

checking OpenCL/cl.h usability... no

checking OpenCL/cl.h presence... no

checking for OpenCL/cl.h... no

checking for OpenCL library... -lOpenCL

 

Словом "yes" должны быть отмечены либо первые три строки, либо вторые (или оба варианта сразу). Если это не так, значит, скорее всего, была неправильно инициализирована переменная C_INCLUDE_PATH. Если же словом "no" отмечена последняя строка, значит, дело в переменной LD_LIBRARY_PATH. Если все окей, запускаем процесс сборки/установки:

 

$ sudo make install clean

 

Проверяем, что ImageMagick действительно был скомпилирован с поддержкой OpenCL:

 

$ /usr/local/bin/convert -version | grep Features

Features: OpenMP OpenCL

 

Теперь измерим полученный выигрыш в скорости. Разработчики ImageMagick рекомендуют использовать для этого фильтр convolve:

 

$ time /usr/bin/convert image.jpg -convolve '-1, -1, -1, -1, 9, -1, -1, -1, -1' image2.jpg

$ time /usr/local/bin/convert image.jpg -convolve '-1, -1, -1, -1, 9, -1, -1, -1, -1' image2.jpg

 

Некоторые другие операции, такие как ресайз, теперь тоже должны работать значительно быстрее, однако надеяться на то, что ImageMagick начнет обрабатывать графику с бешеной скоростью, не стоит. Пока еще очень малая часть пакета оптимизирована с помощью OpenCL.

 

FlacCL (Flacuda)

FlacCL — это кодировщик звуковых файлов в формат FLAC, задействующий в своей работе возможности OpenCL. Он входит в состав пакета CUETools для Windows, но благодаря mono может быть использован и в Linux. Для получения архива с кодировщиком выполняем следующую команду:

 

$ mkdir flaccl && cd flaccl

$ wget www.cuetools.net/install/flaccl03.rar

 

Далее устанавливаем unrar, mono и распаковываем архив:

 

$ sudo apt-get install unrar mono

$ unrar x fl accl03.rar

 

Чтобы программа смогла найти библиотеку OpenCL, делаем символическую ссылку:

 

$ ln -s $LD_LIBRARY_PATH/libOpenCL.so libopencl.so

 

Теперь запускаем кодировщик:

 

$ mono CUETools.FLACCL.cmd.exe music.wav

 

Если на экран будет выведено сообщение об ошибке "Error: Requested compile size is bigger than the required workgroup size of 32", значит, у нас в системе слишком слабенькая видеокарта, и количество задействованных ядер следует сократить до указанного числа с помощью флага ‘--group-size XX’, где XX — нужное количество ядер.

 

Сразу скажу, из-за долгого времени инициализации OpenCL заметный выигрыш можно получить только на достаточно длинных дорожках. Короткие звуковые файлы FlacCL обрабатывает почти с той же скоростью, что и его традиционная версия.

 

oclHashcat или брутфорс по-быстрому

Как я уже говорил, одними из первых поддержку GPGPU в свои продукты добавили разработчики различных крэкеров и систем брутфорса паролей. Для них новая технология стала настоящим святым граалем, который позволил с легкостью перенести от природы легко распараллеливаемый код на плечи быстрых GPU-процессоров. Поэтому неудивительно, что сейчас существуют десятки самых разных реализаций подобных программ. Но в этой статье я расскажу только об одной из них — oclHashcat.

 

oclHashcat — это ломалка, которая умеет подбирать пароли по их хэшу с экстремально высокой скоростью, задействуя при этом мощности GPU с помощью OpenCL. Если верить замерам, опубликованным на сайте проекта, скорость подбора MD5-паролей на nVidia GTX580 составляет до 15800 млн комбинаций в секунду, благодаря чему oclHashcat способен найти средний по сложности восьмисимвольный пароль за какие-то 9 минут.

 

Программа поддерживает OpenCL и CUDA, алгоритмы MD5, md5($pass.$salt), md5(md5($pass)), vBulletin < v3.8.5, SHA1, sha1($pass.$salt), хэши MySQL, MD4, NTLM, Domain Cached Credentials, SHA256, поддерживает распределенный подбор паролей с задействованием мощности нескольких машин.

 

Автор не раскрывает исходники (что, в общем-то, логично), но у программы есть нормально работающая Linux-версия, которую можно получить на официальной страничке.

 

Далее следует распаковать архив:

 

$ 7z x oclHashcat-0.25.7z

$ cd oclHashcat-0.25

 

И запустить программу (воспользуемся пробным списком хэшей и пробным словарем):

 

$ ./oclHashcat64.bin example.hash ?l?l?l?l example.dict

 

oclHashcat откроет текст пользовательского соглашения, с которым следует согласиться, набрав "YES". После этого начнется процесс перебора, прогресс которого можно узнать по нажатию <s>. Чтобы приостановить процесс, кнопаем <p>, для возобновления — <r>. Также можно использовать прямой перебор (например, от aaaaaaaa до zzzzzzzz):

 

$ ./oclHashcat64.bin hash.txt ?l?l?l?l ?l?l?l?l

 

И различные модификации словаря и метода прямого перебора, а также их комбинации (об этом можно прочитать в файле docs/examples.txt). В моем случае скорость перебора всего словаря составила 11 минут, тогда как прямой перебор (от aaaaaaaa до zzzzzzzz) длился около 40 минут. В среднем скорость работы GPU (чип RV710) составила 88,3 млн/с.

 

Выводы

Несмотря на множество самых разных ограничений и сложность разработки софта, GPGPU — будущее высокопроизводительных настольных компов. Но самое главное — использовать возможности этой технологии можно прямо сейчас, и это касается не только Windows-машин, но и Linux.

 

Info

Суть технологии GPGPU — произвольные вычисления на видеокартах.

Существует OpenCL SDK, разрабатываемый компанией Intel, но пока с его помощью можно запускать приложения только на классическом CPU.

FASTRA II — суперкомпьютер, построенный с использованием 13 видеокарт, мощностью 12TFLOPS.

Links

bzip2-cuda.github.com — реализация архиватора bzip2с использованием CUDA.

www.hoopoe-cloud.com — облачный сервис, позволяющий загружать и запускать софт с поддержкой CUDA и OpenCL.

Изменено пользователем den_prox
Ссылка на комментарий
Поделиться на другие сайты

  • 2 weeks later...

den_prox, спасибо за статью! Надеюсь, Вы её полностью прочли и поняли всё,

что там написано. Честно говоря, я не смог её осилить. Новость, конечно, очень интересная,

но вот вторая часть статьи будет интересна только специалистам по IT-технологиям.

Можно было не выкладывать всю статью, а выбрать самые яркие и значимые тезисы,

котоые будут интересны всем, а на полную версию статьи дать ссылку в конце поста.

Ссылка на комментарий
Поделиться на другие сайты

Пожалуйста, войдите, чтобы комментировать

Вы сможете оставить комментарий после входа в



Войти
  • Похожий контент

    • JAZZ and JAZZ
      От JAZZ and JAZZ
      При включении ноутбука и загрузки ОС через 2-5мин начинается нагрев ЦП до 92 градусов GPU до 63 градусов.
      При этом сам запускается процесс fc.exe в видеокарте NVIDIA хотя она должна быть не активной, проблему поймал день назад ноут уходит в сильный перегрев.
      Пробовал лечить, результата нет.
      CollectionLog-2024.10.07-23.37.zip
    • Asya
      От Asya
      Здравствуйте, уважаемые консультанты. Появилась необходимость обратиться к вам за советом. Очень надеюсь на вашу помощь. 
      Ситуация следующая:
      На смартфон в телеге было скачано два файла epub (электронные книги) из чата по англо-китайским книжкам. После, через соцсети файлы переброшены на ноутбук. 
      27.09 - скачана первая книга. Проверка Kaspersky Security Cloud дала добро, и файл был открыт. 
      20.10 - скачана вторая книга. Проверка Касперского - окей, но ещё закидываю файл на Virustotal - и вот тут обнаруживается единственное (1/64) срабатывание у китайского Kingsoft - пишет что в файле HTA trojan. Сразу удаляю файл и перепроверяю первую книгу - результат такой же, Kingsoft ругается, остальные антивирусы молчат.
      Другие файлы, из того же чата, скачанные ранее - все целиком чистые, реакт есть только на те два файла.     
      Я бы подумала на ложное срабатывание, но вдруг вспомнила, что:
      15.10 - на мой номер телефона пришло смс с кодом верификации от китайского Wechat (которым не пользуюсь уже 10 лет) и который, естественно, не запрашивала. 
      Плюсом последние несколько дней на одну из почт (моего основного гугл-аккаунта) сыпется нервирующий иностранный спам (раньше такого не было). 

      Ноутбук проверяла своим Kaspersky Security Cloud, KVRT, Dr.Web Cureit - в них всё чисто, ничего не обнаруживается. 
       
      И теперь сомневаюсь, то ли это просто совпадение, то ли мне попался какой-то хитрый китайский вирус, который ещё никто из антивирусов не видит. И где его теперь искать: на компьютере или на смартфоне (и вот с последним я вообще не знаю, что делать)? Не очень хочется думать, что какие-то китайцы таскают мои данные. 
      Буду очень благодарна, если сможете помочь и подсказать, есть ли следы вирусной активности. Заранее спасибо за уделённое время. 
      CollectionLog-2024.11.02-23.04.zip
    • К Дмитрий
      От К Дмитрий
      Добрый день,
      Служба поддержки не отвечает на мой запрос INC000017019830:
      "Для Управление сведениями учетной записи пришло сообщение с инструкцией. К сожалению, нет никакой возможности войти в личный кабинет пользуясь https://shop.kaspersky.ru/enduser-portal/login, так как учетные данные не воспринимаются. При сбросе пароля на почту ничего не приходит. Прошу исправить ошибку. При этом вход через MyKaspersky выполняется без проблем с теми же данными." Есть ли возможность исправить ошибку? Может ли служба поддержки ответить на вопрос?
       
      Сообщение от модератора kmscom Тема перемещена из раздела Помощь в удалении вирусов
    • Андрей_22222299
      От Андрей_22222299
      Здравствуйте.
      В простое на видеокарту идет нагрузка постоянная примерно 10%. Видно в HWMonitor и Диспетчере задач (в диспетчере видно нагрузку от "Процесс исполнения клиент-сервер" и "Диспетчер окон рабочего стола"). Если их свернуть нагрузка доходит до 20% или 50%, максимум до 80%. 
      Видеокарта нагревается до примерно 45-48 градусов. До этого в простое температура была 36 градусов. 
      На вирусы проверка ничего криминального не выявила 
      Отчет GSI прикрепил (одним архивом не помещается в 5 Мб, разделил содержимое на две части)
      GSI6_DESKTOP-1E2QTIL_Xaron_10_16_2024_14_28_41.zip
      Вот тут вторая часть отчета GSI
      GSI6_DESKTOP-1E2QTIL_Xaron_10_16_2024_14_28_41 (2).zip
    • Dwight
      От Dwight
      Думаю заразил Пк вирусами, так-как при банальном открытии браузера вентиляторы начинают активно набирать обороты, а работать в программах для монтажа стало просто невозможно, но все проблемы меня покидают после открытия диспетчера задач
       
      CollectionLog-2024.10.24-13.20.zip
×
×
  • Создать...