Перейти к содержанию

Оптимизация ПК


VladWizardDark

Рекомендуемые сообщения

Их настолько много, что перечислять особо нет смысла.

Кстати уточните, что именно вы подразумеваете под понятием "оптимизация". Дефрагментация, чистка реестра, настройка самой ОС, удаление ненужных файлов и т.д.

Ссылка на комментарий
Поделиться на другие сайты

Дефрагментация, чистка реестра, настройка самой ОС, удаление ненужных файлов и т.д.

 

Иногда такая "оптимизация" заканчивается весьма плачевно. Для чистки HDD и реестра держу только то, что Вы просили не предлагать. Для дефрагментации - оптимальнее виндового дефрагментатора ещё ничего не придумали. По крайне мере из бесплатных.

 

То, что предложил apq довольно неплохо чистит. Даже очень неплохо. Ему +.

Ссылка на комментарий
Поделиться на другие сайты

Пожалуйста, войдите, чтобы комментировать

Вы сможете оставить комментарий после входа в



Войти
  • Похожий контент

    • KL FC Bot
      От KL FC Bot
      Хотя искусственный интеллект можно применять в ИБ-сфере разными способами, от детектирования угроз до упрощения написания отчетов об инцидентах, наиболее эффективными будут применения, которые значительно снижают нагрузку на человека и при этом не требуют постоянных крупных вложений в поддержание актуальности и работоспособности моделей машинного обучения.
      В предыдущей статье мы разобрались, как сложно и трудоемко поддерживать баланс между надежным детектированием киберугроз и низким уровнем ложноположительных срабатываний ИИ-моделей. Поэтому на вопрос из заголовка ответить очень легко — ИИ не может заменить экспертов, но способен снять с них часть нагрузки при обработке «простых» случаев. Причем, по мере обучения модели, номенклатура «простых» случаев будет со временем расти. Для реальной экономии времени ИБ-специалистов надо найти участки работ, на которых изменения происходят более медленно, чем в «лобовом» детектировании киберугроз. Многообещающим кандидатом на автоматизацию является обработка подозрительных событий (триаж).
      Воронка детектирования
      Чтобы иметь достаточно данных для обнаружения сложных угроз, современная организация в рамках своего SOC вынуждена ежедневно собирать миллионы событий с сенсоров в сети и на подключенных устройствах. После группировки и первичной фильтрации алгоритмами SIEM эти события дистиллируются в тысячи предупреждений о потенциально вредоносной активности. Изучать предупреждения обычно приходится уже людям, но реальные угрозы стоят далеко не за каждым таким сообщением. По данным сервиса Kaspersky MDR за 2023 год, инфраструктура клиентов генерировала миллиарды событий ежедневно, при этом за весь год из них было выделено 431 512 предупреждений о потенциально вредоносной активности. Но лишь 32 294 предупреждения оказались связаны с настоящими инцидентами ИБ. То есть машины эффективно просеяли сотни миллиардов событий и лишь ничтожный процент из них отдали на просмотр людям, но от 30 до 70% этого объема сразу помечаются аналитиками как ложные срабатывания, и около 13% после более глубокого расследования оказываются подтвержденными инцидентами.
       
      View the full article
×
×
  • Создать...